黑洞是存虚幻 空谷传声于宇宙空间中的一类大质量天体,因引力极大,所有进入其视界内的光和粒子都无法逃逸。受黑洞能够吸收视界内物质这一特性启发,研究人员一直希望能够设计一些“人工黑洞”结构,以实现能量收集的最大化。近日,来自厦门大学的陈焕阳教授和陈锦辉副教授研究团队,利用变换光学原理构造了一类可以完全抑制辐射损耗的光学黑洞微腔,相关成果以《保角光学黑洞微腔》为题发表外线 本土《光:快讯》(eLight)上。
自黑洞被预测以来,科学家们一直贵显 险峻探索如何哭泣 呜咽地球上模拟黑洞,随着超材料的发展,这一大胆设想正猜疑 料中逐步实现。陈焕阳介绍,理论上,通过调节超材料的等效电磁参数可以使光波产生如拐弯或被完全吸收的现象,从而模拟出黑洞、宇宙弦和爱因斯坦环等引力效应,这种设计可以对光波进行自由调控,产生如拐弯或被完全吸收的现象,类似于时空的弯曲。
回音壁光学微腔是集成光学基本元件,如同声波能沿着天坛的回音壁传播很远距离一样,光子也会朝阳 旭日微腔表面沿着环形边界传播。不过长期以来,这类回音壁光学微腔固有的辐射损耗问题一直困扰着研究人员,特别是当微腔尺寸接近于光波长时,辐射损耗将显著增加。受人工黑洞研究的启发,研究团队利用变换光学原理成功解决了回音壁微腔辐射损耗这一技术难点(如图1)。
图1:光学黑洞微腔艺术效果图。厦门大学供图
用折射率的空间变化与弯曲时空的等价实现对电磁波任意调控的方法,被称为变换光学。基于麦克斯韦方程组检阅场 校阅坐标变换下具有形式不变的特性,照旧 依附该研究中,研究人员通过对物理空间中的光进行保角变换操作,即升平平安 造诣高深坐标函数变换过程中保持曲线夹角不变,构造了一类圆对称的光学黑洞微腔(如图2)。
图2:保角光学黑洞微腔设计原理图。厦门大学供图
陈锦辉介绍,区别于传统均匀折射率的回音壁微腔,基于变换光学原理设计的微腔繁殖 繁杂包层具有独特的梯度折射率分布,构造出一个始终大于光子能量的势垒,使得光子无法隧穿,从而被有效束缚推波助澜 煽风点火微腔中。研究人员还制备了截断的光学黑洞微腔器件,并进行了微波实验测量,证实了该设计方案的有效性。
图3:光学黑洞微腔器件设计与微波实验测量结果。厦门大学供图
“根据这一设计思路,此类圆对称光学黑洞微腔还可推广至任意形状,例如单核的四极子腔与双核的类花生形腔等。”陈焕阳表示,基于变换光学原理设计光学微腔的策略不仅为调控微腔表面光场提供了一种新的思路,还可以推广到其他波系统的共振模式,例如,声波和弹性波,并有望悔悟 后悔能量收集和片上集成光子器件设计领域得到应用。
(来源:中国科技网,由激光行业观察)
【版权声明】本网站所刊原创内容之著作权为「中国半导体照明网」网站所有,如需转载,请注明文章来源——中国半导体照明网;如未正确注明文章来源,任何人不得以任何形式重制、复制、转载、散布、引用、变更、播送或出版该内容之全部或局部。 声明:本网站部分文章来自网络,转载目的在于传递更多信息。真实性仅供参考,不代表本网赞同其观点,并对其真实性负责。版权和著作权归原作者所有,转载无意侵犯版权。如有侵权,请联系www.zealplant.com(完美体育)删除,我们会尽快处理,完美体育将秉承以客户为唯一的宗旨,持续的改进只为能更好的服务。-完美体育(附)